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Abstract 

Background: The aim of this study was to evaluate the success of the artificial intelligence (AI) system in implant 
planning using three-dimensional cone-beam computed tomography (CBCT) images.

Methods: Seventy-five CBCT images were included in this study. In these images, bone height and thickness in 
508 regions where implants were required were measured by a human observer with manual assessment method 
using InvivoDental 6.0 (Anatomage Inc. San Jose, CA, USA). Also, canals/sinuses/fossae associated with alveolar bones 
and missing tooth regions were detected. Following, all evaluations were repeated using the deep convolutional 
neural network (Diagnocat, Inc., San Francisco, USA) The jaws were separated as mandible/maxilla and each jaw was 
grouped as anterior/premolar/molar teeth region. The data obtained from manual assessment and AI methods were 
compared using Bland–Altman analysis and Wilcoxon signed rank test.

Results: In the bone height measurements, there were no statistically significant differences between AI and manual 
measurements in the premolar region of mandible and the premolar and molar regions of the maxilla (p > 0.05). In the 
bone thickness measurements, there were statistically significant differences between AI and manual measurements 
in all regions of maxilla and mandible (p < 0.001). Also, the percentage of right detection was 72.2% for canals, 66.4% 
for sinuses/fossae and 95.3% for missing tooth regions.

Conclusions: Development of AI systems and their using in future for implant planning will both facilitate the work 
of physicians and will be a support mechanism in implantology practice to physicians.
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Background
Dental implants have been preferred by clinicians for 
many years in cases of the total, partial and single-tooth 
edentulism [1–3]. Detailed planning before the implant 
operation increases the success of the treatment due 
to the facility of placing in the correct position of the 

implant and eliminating the surgical risks [4–6]. For this 
purpose, in implant surgery, the various radiographic 
techniques are used to evaluate alveolar bone features 
(bone quality, thickness, and height) and anatomical vari-
ations in the operation area (such as nasal fossa, mandib-
ular canal, mental foramen and sinuses) [4, 5, 7].

Panoramic and intraoral radiographs are used still in 
dental implant practices to provide an overview of the 
jaws and to create a preliminary idea; but these radio-
graphic techniques are insufficient for detailed implant 
planning [4, 8, 9]. Cross-sectional tomograms such as 
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computed tomography (CT) and cone-beam computed 
tomography (CBCT) which offer three-dimensional 
(3D) information to surgeons are currently used as an 
alternative to these conventional techniques [9]. CBCT 
devices developed for dentomaxillofacial imaging, have 
more affordable prices and smaller device sizes than CT 
devices. It also offers high-quality images at a lower radi-
ation dose and short scanning time [4, 9, 10]. It is known 
that CBCT devices are very successful in determining 
the ideal implant sizes (i.e., length and width) before the 
operation and in predicting the necessary extra surgi-
cal procedures (i.e., guided tissue regeneration, splitting, 
sinus elevation) in case of insufficient bone in the opera-
tion site [4, 5, 7, 11]. Nevertheless, the physician’s knowl-
edge, skills, and experience in the interpretation of CBCT 
images also play very great roles in performing detailed 
implant planning [12].

Artificial intelligence (AI) is a field of computer sci-
ence aimed at performing various specific functions that 
require human intelligence. It imitates human intelli-
gence and improves its these features acquired over time 
using the deep learning methods [13]. In radiological 
diagnostic clinics, using the AI has provided to emerge 
the computer-aided diagnosis (CAD) systems. Then 
the development of this system has gained momentum 
in many fields of medicine and its use also has become 
widespread in health sectors such as dentistry in recent 
years [14, 15]. A deep convolutional neural network 
method (DCNN) is a powerful deep learning application 
used on medical diagnostic images [16, 17]. There are 
studies in the literature where this method, which also 
enables the processing of more complex images such as 
CBCT images, has used in various diagnostics in den-
tistry such as tooth numbering, periapical pathosis, and 
mandibular canal detection [18–21].

Many specialists and general practitioners have not 
received extensive training on radiographic image evalu-
ation and not competent in detailed implant planning 
and interpretation of anatomical data [10, 22]. This is a 
situation that makes challenges of dentistry practice and 
still awaits a solution. Using AI systems in radiographic 
interpretation provides many advantages to the physician 
and can contribute to solving this problem. Also, it may 
prevent wrong diagnosis and treatment planning (which 
may be due to work intensity, carelessness or inexperi-
ence), unnecessary loss of time/workload in dentistry 
[12].

To our best knowledge, there are no studies in the liter-
ature where AI systems are used in implant planning. The 
purpose of this study was to verify the diagnostic perfor-
mance and assess the reliability of an artificial intelligence 
system based on the deep convolutional neural network 
method to implant planning in CBCT images.

Methods
Patient selection and imaging
A total of 75 patients’ (cases with implant indication 
and recorded in 2019) CBCT images obtained from the 
CBCT archive of the Faculty of Dentistry of Eskişehir 
Osmangazi University were included in the study. Also, 
508 measurements (in areas that have missing teeth and 
with implant indication) were performed from them. For 
the study procedures, the Non-interventional Clinical 
Research Ethics Committee Approval was received and 
principles of the Declaration of Helsinki were followed 
at each stage (decision date and number: 08.07.2019 
and 2019-220). All images were acquired with the same 
CBCT scanner (Promax 3D Mid; Planmeca, Helsinki, 
Finland) and the same conditions. Diagnostic settings 
were as follows: 94 kVp, 14 mA, 360° rotation, 27 s.

Evaluation of tomography data
All images were examined by an oral and maxillofacial 
radiologist with at least 8  years of professional experi-
ence (İ.Ş.B) by converting them to DICOM format. The 
jaws were separated as mandible/maxilla and each jaw 
was grouped as anterior/premolar/molar teeth region. 
Canine teeth and incisors were included in the anterior 
region. Canals/sinuses/fossae associated with alveolar 
bones were detected and missing teeth were recorded. 
In missing teeth areas, bone height and thickness were 
measured by manual assessment methods using Invivo-
Dental 6.0 (Anatomage Inc. San Jose, CA, USA). In other 
words, all evaluations were performed as in implant 
plannings; and limitations of anatomical structures were 
taken into consideration.

After manual evaluations, all files were randomly 
uploaded to the deep convolutional neural network 
(Diagnocat, Inc.) for determinations of canals/sinuses/
fossae and calculation of bone length/width in missing 
teeth areas. The data obtained from manual assessment 
and artificial intelligence (AI) methods were compared.

Model pipeline
Diagnocat AI system prepares an implant planning 
report based on a pipeline of multiple pre-trained fully 
convolutional networks and algorithmic slice extraction. 
Predictions crucial for implant planning include voxel-
perfect segmentations of teeth, jaws, mandibular canals, 
maxillary sinuses, and missing teeth.

Missing teeth segmentation relies on both present 
teeth and jaws segmentations. A missing tooth mask is 
a virtual tooth mask that is extracted using neighbor-
ing teeth location, tilt, and placement according to a 
jaw. It allows to predict a mesiodistal angle of implant 
placement and provides a guide to a slicing algorithm. 
Implant planning study includes a panoramic reformat 
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of a specified jaw and a slice section with vestibulooral 
slice orientation. Teeth, jaws, and mandibular canal seg-
mentations are used to build a panoramic ribbon of 
both a study image and a combined segmentation mask. 
All slices in a study are extracted from a region of inter-
est (RoI) of a panoramic image ribbon with a user cho-
sen step, 2 mm by default, and slice thickness, 1 voxel by 
default. Predicted target (missing) tooth and neighboring 

(potentially missing) teeth masks define a RoI and mesio-
distal angle of slice extraction showing possible implant 
placement (Fig. 1).

Every slice has two to three measurements providing 
information about possible implant size and direction. 
The first measurement shows a width of alveolar bone. 
The second measurement shows a distance from the 
first measurement line to the closest obstacle in implant 

Fig. 1 AI model pipeline to implant planning procedure
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direction which is either of mandibular canal, maxillary 
sinus, or a jaw bone edge. The third measurement is cal-
culated only in mandible case and shows a vertical dis-
tance from an oral end of the first measurement line to a 
mandible bone edge (Fig. 2).

The architecture of the deep convolutional neural 
networks
Diagnocat AI system exploits a set of pre-trained seman-
tic segmentation networks based on internally modified 
fully convolutional 3D U-Net architecture from [23] to 
obtain voxel-perfect segmentation masks of present teeth 
and anatomy elements and to approximate localization of 
missing teeth.

Examiner consistency
The measurements were performed by the same exam-
iner. One hundred measurements were repeated 1 week 
after the first evaluation by the examiner. In this way, 
intra-examiner agreement and reliability were evaluated 
using intraclass correlation coefficients and intra-evalua-
tor technical error measurement (TEM) calculations. The 
intraclass correlation coefficient (95% confidence inter-
val) was 0.995 (0.992–0.997) for bone thickness; 0.996 
(0.994–0.997) for bone height. Also, relative TEM was 
3.14 (acceptable) and reliability was 99.5% for bone thick-
ness measurement, relative TEM was 2.37 (acceptable) 
and reliability was 99.6% for bone height measurements.

Statistical analyses
Statistical analyses were performed with the SPSS 21.0 
Package Data Program (SPSS 21.0 Software Package 
Program, Inc., Chicago, IL). Kolmogorov–Smirnov 

test was used when testing for normality. A compari-
son of measurements calculated by manual assessment 
and artificial intelligence (AI) was made by Wilcoxon 
signed‐rank test and Bland–Altman analysis. A value of 
p < 0.05 was considered statistically.

Results
Correctness frequencies of canal/sinus/fossa/missing 
tooth detections of the AI system are listed in Table 1. 
The percentage of right detection was 72.2% for canals, 
66.4% for sinuses/fossae. Also, it was seen that 484 
(95.3%) of 508 missing tooth regions were detected cor-
rectly and only 24 (4.7%) was detected incorrectly.

The values of bone height and thickness measure-
ments with the AI system and manual assessment are 
shown in Table  2. The AI system was unable to per-
form 80 of bone height measurements (therefore, bone 
height measurements evaluated on 428 images) and 
15 of bone thickness measurements (therefore, bone 
thickness measurements evaluated on 493 images).

In the bone height measurements, there were no 
statistically significant differences between AI and 
manual measurements in the premolar region of man-
dible and the premolar and molar regions of the maxilla 
(p > 0.05). In the bone thickness measurements, there 
were statistically significant differences between AI 
and manual measurements in all regions of maxilla and 
mandible (p < 0.001). Bland Altman plots for measure-
ments are shown in Figs.  3 and 4. Confidence interval 
for differences between the manual and AI system are 
shown in Table 3.

Fig. 2 Implant planning report which was created otomatically for maxilla and mandibula case using the AI
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Discussion
In recent years, there has been a significant increase 
in the number of studies using AI for purposes such as 
disease detection and classification, organ and lesion 
segmentation in the medicine [24, 25]. With all these 
developments, the use of AI systems to interpret radio-
logical images in dental radiology has also become wide-
spread [14, 15, 25]. Using computer-aided systems in 
imaging techniques that require experience and expertise 
such as especially CT and CBCT will provide great con-
venience to physicians. But new academical studies are 
needed in this regard. In light of all this information, the 
present study aims the using DCNN during the planning 
of implants which is a popular treatment option in den-
tistry practice.

In the literature, there are studies reported the AI sys-
tems’ using in a variety of dentistry situations such as 
detecting dental caries [26–29], root fractures [30–32], 
root morphologies [33], jaw pathologies [34], periodon-
tal bone damages [35–38], periapical lesions [21] and also 

determinating teeth and their numbering [19, 39]. Ana-
lyzes of these studies, which are the pioneers of DCNN 
applications in dentistry, were made on a wide variety 
of radiographic imageries such as periapical, panoramic, 
bitewing cephalometric, CT and CBCT. Nevertheless, 
it is seen that the number of studies based on CT and 
CBCT is limited [25]. Johari et al. found that the proba-
bilistic neural network (PNN) method was successful 
in determining vertical root fractures in their study on 
CBCT images [31]. Hiraiwa et al., also reported that AI 
showed acceptable results in determining the extra roots 
of teeth in CBCT [33]. Also, Orhan et al. reported in their 
study on periapical lesions in CBCT images that the vol-
ume measurements calculated with the convolutional 
neural network (CNN) method are compatible with man-
ual measurements and this situation are promising for 
the future [21].

Treatment planning is one of the most important steps 
of workflow in both medicine and dentistry. For the suc-
cess in the treatment, the correct diagnosis should be 

Table 1 False and right percentages of canal/sinus/fossa detections of the AI system

 Regions Canal/sinus/fossa detection (%, n) Missing tooth detection (%, n)

Canal detection (Mandibula) Sinus/fossa detection (Maxilla) Mandibula Maxilla

False Right False Right False Right False Right

Anterior 83%
(n = 44)

17%
(n = 9)

91.8%
(n = 56)

8.2%
(n = 5)

9.4%
(n = 5)

90.6%
(n = 48)

8.2%
(n = 5)

91.8%
(n = 56)

Premolar 29.5%
(n = 18)

70.5%
(n = 43)

27.7%
(n = 28)

72.3%
(n = 73)

3.3%
(n = 2)

96.7%
(n = 59)

5.9%
(n = 6)

94.1%
(n = 95)

Molar 2.5%
(n = 3)

97.5%
(n = 117)

7.1%
(n = 8)

92.9%
(n = 104)

1.7%
(n = 2)

98.3%
(n = 118)

3.6%
(n = 4)

96.4%
(n = 108)

Total 27.8%
(n = 65)

72.2%
(n = 169)

33.6%
(n = 92)

66.4%
(n = 182)

3.8%
(n = 9)

96.2%
(n = 225)

5.5%
(n = 15)

94.5%
(n = 259)

Table 2 Bone height and thickness measurements with the AI system and manual assessment

Bold variables in the table indicates no statistical significant difference (p > 0.05)

*There were no differences between AI and manual measurements for each parameter (p > 0.05). Min, minimum; Max, Maximum
# A total of 508 measurements were performed, but the AI system was unable to perform 80 of bone height measurements and 15 of bone thickness measurements. 
For each parameter, statistical analyzes were made on the measurements that can only be evaluated with the AI system

 Regions Parameters

Bone height measurements (n = 428)# Bone thickness measurements (n = 493)#

 AI Manual  AI Manual

Median (min–max) Median (min–max) Median (min–max) Median (min–max)

Mandibula Anterior 19.2 (3.1–31.6) 12.8 (5.7–19.1) 5.7 (1.2–11.8) 4 (2.1–10.8)

Premolar 12 (1.2–26.4)* 12 (5–19.9)* 6.1 (2.4–11.7) 4.6 (2.5–11.1)

Molar 10 (1.2–19.2) 11,7 (2.6–20) 7.7 (4.5–13.8) 5.2 (3.3–12.5)

Maxilla Anterior 24.3 (3.9–27.3) 13 (3.6—16,6) 6.5 (3.9–31.1) 4.4 (2.1–18.9)

Premolar 12.2 (2.3–28.8)* 12.1 (2.4—22)* 7.2 (2–34.4) 4.9 (0–11.1)

Molar 6.9 (0.5–26.3)* 7.6 (0–17.6)* 9.5 (1.6–29.5) 5.6 (0–15.2)
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made first, then the ideal treatment planning should be 
created for the patient. Treatment planning is a detailed 
organizational process; it depends on many factors such 

as the physician’s knowledge experience [40]. In recent 
years, artificial intelligence systems have been used to 
support decision making processes in the diagnosis and 

Fig. 3 Bland Altman plots for bone height. M1, Manual measurements; M2, AI measurements

Fig. 4 Bland Altman plots for bone thickness. M1, Manual measurements; M2, AI measurements

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Page 7 of 9Kurt Bayrakdar et al. BMC Med Imaging           (2021) 21:86  

treatment planning of physicians. The neural network 
machine learning system was used in various treatment 
plans such as radiation therapy and orthognathic sur-
gery and promising results were obtained [40–42]. As it 
is known, radiographic imaging plays an important role 
in the planning of dental implants. It is recommended 
to examine the operation site with 3-dimensional imag-
ing systems before the operation and to make detailed 
planning by performing a series of measurements under 
conditions permitted by anatomic variations [5]. Forma-
tions such as mandibular canal, sinuses and nasal fossa 
evaluated in the current study are the main anatomic 
variations that shape the implant planning. Kwak et  al. 
recently reported successful results in determining the 
mandibular canal by the CNN method in CBCT images 
and stated that this may be an opportunity for future 
dental planning [18]. Similarly, Fukuda et  al. evaluated 
the relationship between the 3rd mandibular molar tooth 
and the mandibular canal in their study on 600 pano-
ramic radiographs [43]. Jaskari et. al have used the CNN 
method for mandibular canal segmentation in al CBCT 
images. They stated that AI systems give sensitive and 
reliable results in canal determination and these systems 
may be an important role in future implant planning [44]. 
The results of our study were similar to these studies; and 
its success percentage was 97.9% in the mandibular canal 
detection.

In the present study, sinus/fossa and missing teeth 
detection analysis were also performed, and it was 
observed that AI systems showed a success of 66.4% and 
95.3%, respectively. It is seen that the number of studies 

regarding the detection of nasal fossa should be increased 
and the system should be improved. Because, as the suc-
cess of the detection of anatomic structures in AI systems 
increases, the measurements made for implant planning 
will yield more successful results. To our best knowledge, 
there is no study in the literature for the determination 
of lost tooth/fossa and sinus, this is the first study on 
this subject. However, one study for determining sinus 
pathologies on panoramic images has been carried out 
and successful results of AI have been reported [45].

In this study, two separate measurements, bone thick-
ness, and height were performed to evaluate the success 
of implant planning. The results of the study show that 
bone thickness measurements of AI should be improved 
using a deep learning system. We think this may be due to 
the measurement of the AI system with incorrect angles 
when evaluating bone thickness measurements. In the 
determination of nasal fossa in the maxilla and mandibu-
lar accessory canals in the mandibula, the system was not 
very sensitive; this situation caused some incompatibili-
ties in the anterior region bone height measurements.

While the determination of the mandibular canal was 
successful, it is found that the bone height could not be 
determined correctly in these regions. We think that this 
may be because the system did not take into account the 
implant diameter and thickness. This deficiency may 
cause the system to bypass the canal from the buccal/
lingual of the canal during measurement. As a result, the 
AI system can report measurements in this region higher 
than they should.

Table 3 Confidence interval for differences of manual and AI system

CI confidence interval

Parameters Jaws Regions Paired differences t df Sig (2-tailed)

Mean SD Standard 
error mean

95% CI of the 
difference

Lower Upper

Bone  height Mandibula Anterior − 5.79 6.11 0.89 − 7.58 − 3.99 − 6.49 46  < 0.001

Premolar − 9.50 8.42 2.66 − 15.52 − 3.48 − 3.57 9 0,006

Molar − 1.02 4.99 0.66 − 2.35 0.30 − 1.55 56 0,126

Maxilla Anterior − 2.05 7.35 0.77 − 3.58 − 0.52 − 2.66 90 0,009

Premolar 1.64 3.07 0.28 1.08 2.20 5.81 117  < 0.001

Molar − 0.03 4.04 0.39 − 0.81 0.75 − 0.08 104 0,938

Bone  thickness Mandibula Anterior − 1.35 1.15 0.17 − 1.68 − 1.00 − 8.01 46  < 0.001

Premolar − 4.04 7.62 0.97 − 5.99 − 2.09 − 4.14 60  < 0.001

Molar − 1.46 1.46 0.19 − 1.85 − 1.07 − 7.53 56  < 0.001

Maxilla Anterior − 5.28 8.42 0.84 − 6.95 − 3.60 − 6.26 99  < 0.001

Premolar − 2.20 1.75 0.16 − 2.52 − 1.89 − 13.68 117  < 0.001

Molar − 5.07 6.41 0.61 − 6.28 − 3.86 − 8.29 109  < 0.001
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However, it is seen that the results of the AI system 
consistent with the manual measurements in the max-
illa molar/premolar region, as well as in the mandible 
premolar region; these results offer hope for the usabil-
ity of the system in implant planning.

Conclusion
Consequently, using these systems in implant planning 
will both facilitate the work of physicians and will be 
a support mechanism in implantology practice. The 
success of the present study in the detection of sinus 
/ mandibular canal and missing teeth and the meas-
urements it offers in implant planning reinforces this 
possibility. There is a need for more extensive stud-
ies in which environmental anatomical formations are 
evaluated by AI for the development of CNN systems in 
implant planning.
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